Financial Impact of Electric Motor System Reliability Programs

Dr Howard W. Penrose
BJM Corp, ALL-TEST Division

Keywords: electric motor, motor circuit analysis, MCA, infrared thermography, vibration analysis

ABSTRACT
This article discusses the financial impact of motor condition on electric motor efficiency and reliability by reviewing a combination of Motor Circuit Analysis (MCA), infrared and vibration techniques. Cost impacts on energy, production and maintenance will be outlined. The topic will surround a utility study and US Department of Energy market transformation success during 2000 and 2001. The primary areas of concern are phase balance, rotor bars, cleanliness and bearing issues.

INTRODUCTION
Electric motors are the prime mover of industry and our general comfort in commercial buildings. The motor systems consume 20% of all energy used in the U.S. and 59% of all electricity generated:

- 78% of electrical energy in industrial systems (>90% in process industries)
- 43% of the electrical energy in commercial buildings
- 37% of the electrical energy in the home

There are well over 1.2 billion electric motors of all types used throughout the U.S. However, electric motors are often ‘out-of-sight, out-of-mind,’ until production is down due to a burn-out or catastrophic bearing failure.

It is important to understand that equipment usually fails over time, and efficiency and reliability decrease and losses increase over time prior to most catastrophic failures. Although some equipment faults are instantaneous, the larger majority of catastrophic faults that impact production result from a failure in the implementation of a maintenance program. This failure is primarily due to management not fully understanding that maintenance is an investment in the business and not an “expense of doing business.” If you do not invest in materials, equipment and people, you do not have product to sell: If you do not invest in predictive maintenance practices (PM, TPM, RCM, or any other program), you do not have product to sell or have less of it at a higher overall production cost.

Proper implementation of a maintenance program has been shown to reduce energy consumption in plants by as much as 10-14%,1,2 while also reducing unplanned production downtime. See Table 1:

<table>
<thead>
<tr>
<th>Industry</th>
<th>Average Downtime Costs, per hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest Products</td>
<td>$7,000</td>
</tr>
<tr>
<td>Food Processing</td>
<td>$30,000</td>
</tr>
<tr>
<td>Petroleum and Chemical</td>
<td>$87,000</td>
</tr>
<tr>
<td>Metal Casting</td>
<td>$100,000</td>
</tr>
<tr>
<td>Automotive</td>
<td>$200,000</td>
</tr>
</tbody>
</table>

In a recent utility energy and reliability project, a group of electric motors of 5 to 200 horsepower were reviewed in several industries, including: petroleum and chemical; forest products; food processing; mining (quarry); and pulp & paper. The plants varied from having no existing planned maintenance program to full implementation, including an existing energy program. Of these motors, randomly evaluated, 80% were found to have at least one deficiency with 60% of those (48% of the original) found to be cost effective to replace. The plants without programs had the greatest number of defective motors; the plants with existing maintenance and energy programs had the least number of defective motors. Eight percent of the motors were evaluated to determine the types of faults and the potential cost avoidance with corrective action (repair or replace) by using vibration analysis and motor circuit analysis (MCA). Several had a combination of electrical and mechanical problems. See Table 2:

<table>
<thead>
<tr>
<th>Type of Test</th>
<th>Percentage of Faults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration Analysis</td>
<td>45% of motors tested</td>
</tr>
<tr>
<td>Motor Circuit Analysis</td>
<td>70% of motors tested</td>
</tr>
<tr>
<td>Insulation Resistance (Meg-Ohms)</td>
<td>5% of motors tested</td>
</tr>
</tbody>
</table>

Several motors had combined vibration and electrical faults. A few had winding faults combined with insulation resistance faults. Several had shorted windings that were continuing to cause production problems, but were written off as “nuisance” trips (detected in the study by using MCA). “Findings of the advanced portion of the Motor PAT Tool demonstration project indicate that measuring for … phase unbalance of resistance, inductance, impedance, phase angle and I/F [current/frequency response] provided more useful results.” The combined incremental production cost avoidance of 20 of the defective motors, from 5 to 250 horsepower, was $297,100, rendering implementation costs insignificant.

The purpose of this paper is to first provide information for determining cost avoidance through the application of a maintenance program on electric motors. This will be followed with a discussion of the implementation of MCA, infrared, and vibration analysis.

COST AVOIDANCE THROUGH MAINTENANCE

There are a number of ways to determine cost avoidance through the implementation of maintenance programs. In this discussion, the focus will be on the methods introduced through the U.S. Department of Energy’s Industrial Assessment Centers (IACs), which provide a very basic and conservative method. The PAT Tool Demonstration Project used a much more complex method, which is outside the scope of this article. However, some of the tools, such as MotorMaster Plus, will be used to provide cost information for motor repair costs.

“Utility representatives have indicated that in a survey of facilities with no preventive maintenance programs, motor rewinds represented 85% of the total number of motor repairs (on average). After preventive maintenance programs were established, the number of rewinds was reduced to about 20% of the total.” This statement has been found to hold true through research projects including: Dreisilker’s Total Motor System Maintenance and Management Program (DTM™), the PAT Tool Project, and others.

For the purpose of this discussion, we will consider a paperboard plant with 485 motors. There are two operating production lines that have a potential downtime cost of $6,575 each. On average, 3 motors were repaired per month, of which a majority (70%) required rewind replacement (normally caused by immersion, contamination or the motors becoming coated in material). The facility operated 8,000 hours

6 MotorMaster Plus is a free motor energy and management software available through the US Department of Energy – www.oit.doe.gov/bestpractices/
per year with the catastrophic failures normally causing one line to fail at a time. Additional costs, not covered by this discussion, included cleaning of the system prior to re-starting the operation. No maintenance program in place.

Table 3: Breakdown of Motor Horsepower and Repair Costs

<table>
<thead>
<tr>
<th>Motor Size</th>
<th>Number of Motors</th>
<th>Rewind Cost</th>
<th>Recon Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20 hp</td>
<td>347 (Replacement, not repaired)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>$660</td>
<td>$220</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>$760</td>
<td>$255</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>$880</td>
<td>$295</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>$1,020</td>
<td>$340</td>
</tr>
<tr>
<td>50</td>
<td>27</td>
<td>$1,295</td>
<td>$430</td>
</tr>
<tr>
<td>75</td>
<td>18</td>
<td>$1,500</td>
<td>$500</td>
</tr>
<tr>
<td>100</td>
<td>21</td>
<td>$1,610</td>
<td>$540</td>
</tr>
<tr>
<td>125</td>
<td>32</td>
<td>$1,820</td>
<td>$610</td>
</tr>
<tr>
<td>400</td>
<td>6</td>
<td>$3,400</td>
<td>$1,200</td>
</tr>
<tr>
<td>750</td>
<td>4</td>
<td>$7,735</td>
<td>$2,600</td>
</tr>
</tbody>
</table>

Step 1. Calculate the unplanned production downtime costs:

Equation 1: Unplanned Production Downtime Cost

\[
PC_{\text{Downtime}} = (MF/Yr) \times (P_{\text{Lost/failure}}) \times (P_{\text{Cost}})
\]

\[
= (36 \text{ motors/yr}) \times (4 \text{ hrs/failure}) \times ($6,575/\text{hr})
\]

\[
= $946,800/\text{year}
\]

Where \(PC\) is the annual cost of unplanned downtime, \(MF\) is the number of motor failures, \(P\) represents production.

Step 2. Calculate the average cost of rewinding equipment. In this case, we will concentrate on just 20 horsepower and larger.

Equation 2: Average Cost of Rewinding Motors

\[
R_{\text{avg}} = \frac{\sum(N_{n1} \times RWC_{n1}) + \ldots + (N_{nn} \times RWC_{nn})}{NT}
\]

\[
= \frac{(15 \times 20 \times $660) + (10 \times 25 \times $760) + \ldots + (4 \times 750 \times $7735)}{138 \text{ motors}}
\]

\[
= $1,650/\text{motor}
\]

Where \(R_{\text{avg}}\) is the average rewind cost, \(N_n\) is the number of motors for each horsepower; \(RWC_{n}\) is the rewind cost for each horsepower.

The average cost for reconditioning the motors is calculated the same way, except the reconditioning cost is used instead of rewind costs. For this example, the average reconditioning cost would be $555.

Step 3. Calculate the average repair cost per motor before and after maintenance implementation.

Equation 3: Average Repair Cost per Motor

\[
R_{\text{avg}} = (\% \text{ Recondition} \times \$/\text{Recondition}) + (\% \text{ Rewind} \times \$/\text{Rewind})
\]

\[
= (30\% \times $555) + (70\% \times $1,650)
\]

\[
= $1,322/\text{motor}
\]

Assuming that the number of motors rewound versus reconditioned would be inverse with the application of the program, the number of rewound motors would be 30\%, and the average cost of repair would be $884 per motor. Once the program is implemented, the number of motors to be repaired, overall, will be reduced.
Step 4. Estimate the savings, given the number of motors repaired per year and the difference between the costs of reconditioned motors vs rewound.

Equation 4: Repair Cost Reduction Estimate (RRC_{est})

\[
RRC_{est} = (\text{motors repaired/year} \times \text{initial repair costs}) - (\text{motors repaired/year} \times \text{new repair costs})
\]

\[
= (36 \text{ motors/yr} \times \$1,322/\text{motor}) - (36 \text{ motors/yr} \times \$884/\text{motor})
\]

\[
= \$15,768 \text{ per year}
\]

Step 5. Determine potential energy savings. For the purposes of conservative estimation, a 2% improvement in efficiency will be assumed. Maintenance components include (and the type of test system, vibration and MCA only, for this paper, used to evaluate):

- Improved lubrication (vibration)
- Proper alignment and balancing (vibration)
- Correction of circuit unbalances (MCA)
- Reduced motor temperatures (MCA, vibration)
- Reduced efficiency losses caused by rewinds (US Department of Energy estimates one percentage point efficiency reduction per rewind)
- Improved drive system performance

Equation 5: Energy Cost Savings

\[
\text{Energy Savings} = (\text{total hp of motors considered}) \times (\text{load factor}) \times (\text{operating hours}) \times (\% \text{ savings}) \times (0.746\ \text{kW/hp}) \times (\text{Electrical usage costs})
\]

\[
= 14,930 \text{ horsepower} \times 75\% \text{ load} \times 8,000 \text{ hrs} \times 2\% \text{ savings} \times 0.746\ \text{kW/hp} \times \$0.06/\text{kWh}
\]

\[
= \$80,192 \text{ per year}
\]

Step 6. Determine the in-house labor costs to implement the program. Assume 1 man-hour per motor per year. Estimated costs for this example will be based upon $25 per hour.

Equation 6: In-House Labor Costs

\[
\text{Labor} = (1 \text{ hr/month/motor}) \times (# \text{ of motors}) \times (12 \text{ months/yr}) \times ($/\text{man-hour})
\]

\[
= 1\text{hr/month/motor} \times 138 \text{ motors} \times 12 \text{ months/yr} \times ($25/\text{man-hour})
\]

\[
= \$41,400 \text{ per year}
\]

Step 7. Estimate combined costs of the MCA and vibration analysis equipment. For the purposes of this article, the same equipment selected for the utility PAT Project will be used. The estimated combined costs for the ALL-TEST IV PRO™ 2000 MCA instrument and the Pruftechnik vibration analysis equipment is $22,000.

Step 8. Determine the training costs for implementing the system. Assuming equipment training costs of $4,500 per person and maintenance training costs of $6,000 per person, the cost should be approximately $10,500 per person.

Step 9. This final step is to determine the simple payback for the implementation of the program. In the case of this example, assume a 50% reduction in unplanned downtime for the first year:

<table>
<thead>
<tr>
<th>Table 4: Costs and Savings for Maintenance Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance Savings</td>
</tr>
<tr>
<td>$473,400 Reduced downtime</td>
</tr>
<tr>
<td>$15,768 Reduced motor repair costs</td>
</tr>
<tr>
<td>$80,192 Energy cost reduction</td>
</tr>
<tr>
<td>$569,360 Total Savings per Year</td>
</tr>
</tbody>
</table>
Equation 7: Simple Maintenance Payback

\[
\text{Payback} = \frac{\text{Total Costs per Year}}{\text{Total Savings per Year}}
\]

\[
= \frac{\$73,900}{\$569,360}
\]

\[
= 0.13 \text{ years or 1.6 months}
\]

The smaller size of this particular plant would allow for complete implementation of a maintenance program. Larger manufacturing plants will often have thousands of electric motors and may require a breakdown of departments or areas for successful implementation.

APPLICATION OF VIBRATION ANALYSIS

Vibration analysis is used by maintenance professionals as a means to detect mechanical and some limited electrical faults in rotating equipment. By performing regularly scheduled testing, the operating reliability of an electric motor can be determined through trending.

Based upon bearing failure, greasing, belt tension, misalignment, or other unbalances, increases in energy losses can occur. These losses show as vibration, noise and heat. Improper belt tension and greasing will increase the friction and windage losses of the motor. This can be calculated as:

Equation 8: Bearing Losses

\[
\text{Watts Loss} = \frac{(\text{load}, \text{lbs} \times \text{Journal Diameter}, \text{inches} \times \text{rpm} \times f)}{169}
\]

Factor \(f \) is dependent upon oil used and temperature; 0.005 is typical.

Vibration analysis for troubleshooting will detect bearing (41% of failures) faults, balance and alignment (12% of failures) faults, primarily. It will also detect rotor faults (10% of failures) and some electrical faults (37% of failures), to some extent. However, electrical and rotor faults tend to fall in frequency ranges that can be related to other equipment, and are directly load related. Vibration analysis requires the electric motor to be operating at a load that is constant during each test that would be trended.

APPLICATION OF MOTOR CIRCUIT ANALYSIS

“There are many tools available to perform quality preventive maintenance of individual motors. Of these, motor circuit analysis (MCA) systems hold great promise for identifying motor problems before expensive failure and for improving the general efficiency of motor systems in general.”

Motor circuit analysis allows the analyst to detect winding faults and rotor faults in the electric motor. One power of this type of test method is that it requires the equipment to be de-energized, which allows for initial incoming testing of the electric motors and troubleshooting when equipment fails. Primary energy losses that can be detected include phase unbalance and \(I^2R \) losses, while faults include shorted windings, loose connections, ground faults and rotor faults.

A resistive fault gives off heat, as a loss. For instance, a 0.5 ohm loose connection on a 100 horsepower electric motor operating at 95 amps:

Equation 9: Resistive Losses

\[
\text{Kilowatts Loss} = \frac{(I^2R)}{1000}
\]

\[
= (95^2 \times 0.5)/1000
\]

\[
= 4.5 \text{ kW (demand loss)}
\]

Equation 10: Energy Usage Loss

\[
\$/\text{yr} = \text{kW} \times \text{hrs/yr} \times \$\text{/kWh}
\]

\[
= 4.5 \text{ kW} \times 8000 \text{ hrs/yr} \times \$0.06/\text{kWh}
\]

\[
= \$2,160 / \text{year}
\]

8 DrivePower. Chapter 12, 1993
Electric motor phase unbalances (inductance and impedance) effect current unbalances, cause motors to run hotter, and reduce the motor’s ability to produce torque. The percentage unbalance of impedance can be evaluated to determine efficiency reduction and additional heating of the electric motor. A general rule is that, for every 10°C increase in operating temperature, the life of the equipment is reduced by half.

Figure 1: Efficiency Reduction Due to Impedance Unbalance

For example, the paperboard company has a 100 horsepower electric motor that would normally be 95% efficient, that has a 3.5% impedance unbalance. The efficiency would be reduced by 4 points of efficiency, or to 91%.

Equation 10: Energy Cost Due to Phase Unbalance Losses

\[
\text{$$/yr savings} = \text{hp} \times 0.746 \times \%\text{load} \times \$/\text{kWh} \times \text{hrs of operation} \left(\frac{\text{100/Le}}{\text{100/He}}\right) \\
= 100 \text{ hp} \times 0.756 \times .75 \text{ load} \times \$0.06/\text{kWh} \times 8000 \text{ hrs} \left(\frac{\text{100/91}}{\text{100/95}}\right) \\
= \$1,240 \;/\text{year}
\]

Figure 2: Increase in Temperature Rise Due to Phase Unbalance

The impedance unbalance will also cause a increase in operating temperature based upon an increase in I^2R losses. In the case of the 100 horsepower electric motor, this means a temperature rise of about 30°C, or a reduction in motor insulation life to 13% of its original.

Motor Circuit Analysis is also used to evaluate the windings for contamination. “Frequent cleaning of a motor’s intake (if any) and cooling fins is especially important in dirty environments... Tests confirm that even severe duty, generously rated, and oversized motors can quickly fail in such conditions if they become thickly coated or if lightly coated and with their airflow reduced by half. Their insulation life can then fall to 13 – 25% of normal.”

9 The same phenomenon occurs if the windings become coated with contaminants.

The MCA rotor test requires inductance and impedance readings through 360 degrees of rotation of the rotor. The readings are graphed and viewed for symmetry. MCA rotor tests provide a definitive condition of the rotor and are often performed following identification of a possible rotor fault by vibration, as part of an acceptance program, during repair or when the motor is identified as having torque problems.

9 *DrivePower*, Chapter 12, 1993
APPLICATION OF INFRARED ANALYSIS

Infrared analysis is used by maintenance professionals as a means to detect, through the application of thermal imaging and measurement, problems associated with excessive temperatures (hot or cold). In the case of electric motor systems, thermal imaging is a well-documented method used to detect conditions such as:

✓ Loose connections
✓ Overloaded phases and circuits
✓ Bearing problems
✓ Hot spots or overloaded motors
✓ Other thermal-related faults

In many cases, thermographers may identify issues with electric motors, then follow up or recommend other technologies to confirm findings.

MULTI-TECHNOLOGY APPROACH

The use of just one technology to review an electric motor system may miss some opportunities. However, a multi-technology approach, using two or more disciplines is more likely to detect existing or potential faults much more quickly. For instance, if a thermographer finds a motor with an anomalously high temperature, vibration and MCA technician(s) may be called in to perform additional tests to confirm that a fault exists and determine the type of fault more quickly than with any one technology. This reduces the overall cost associated with maintenance time.

CONCLUSION

The implementation of an electric motor maintenance program will have a significant impact on a company’s bottom line. Whether the company has a few hundred motors or many thousands, the simple payback from the investment into vibration, infrared and MCA is usually termed in months. Payback is impacted from savings from production availability, reduced equipment repair costs and improved energy costs, all with a minimum investment in manpower, training and equipment.

The application of several inspection technologies can complement each other while also enhancing the value of the maintenance program and improving equipment availability. Vibration analysis evaluates the mechanical condition of equipment; MCA evaluates the electrical condition of equipment; and infrared identifies both electrical and mechanical conditions. Combining all modalities, the maintenance analyst has the ability to view the complete condition of the electric motor.

BIBLIOGRAPHY

DrivePower, 1993.
